Jumat, 19 Februari 2010

TRIGONOMETRI

Trigonometry


PERSAMAAN GARIS LURUS

Bentuk-Bentuk Persamaan Garis

1.Bentuk umum
ax + by + c = 0 atau y = mx + n

2. Persamaan sumbu x ® y = 0

3. Persamaan sumbu y ® x = 0

4. Sejajar sumbu x ® y = k

5. Sejajar sumbu y ® x = k

6. Melalui titik asal dengan gradien m
y = mx

7. Melalui titik (x1,y1) dengan gradien m
y -y1 = m (x - x1)


8. Melalui potongan dengan sumbu di titik (a,0) dan (0,b)
bx + ay = ab


9. Melalui titik (x1,y1) dan (x2,y2)
(y-y1)/(y2-y1) = (x-x1)/(x2-x1)
y-y1 = ((y2-y1)/(x2-x1))(x-x1)


ket :

Persamaan (9) didapat dari persamaan (7) dengan mengganti
m=(y2-y1)/(x2-x1)
Garis ini mempunyai gradien m = (y2-y1)/(x2-x1)

FUNGSI LINIER

1. Pengertian Fungsi Linier
Fungsi linier adalah suatu fungsi yang variabelnya berpangkat satu atau suatu fungsi
yang grafiknya merupakan garis lurus. Oleh karena itu fungsi linier sering disebut
dengan persamaan garis lurus (pgl) dengan bentuk umumnya sbb.:
f : x → mx + c atau f(x) = mx + c atau y = mx + c
m adalah gradien / kemiringan / kecondongan dan c adalah konstanta.

2. Melukis Grafik Fungsi Linier
Langkah-langkah melukis grafik fungsi linier
a Tentukan titik potong dengan sumbu x, y = 0 diperoleh koordinat A( x1, 0)
b Tentukan titik potong dengan sumbu y, x = 0 diperoleh koordinat B( 0, y1)
c hubungkan dua titik A dan B sehingga terbentuk garis lurus.

3. Gradien Dan Persamaan Garis Lurus
a). Garis lurus yang melalui titik A(x1, y1) dan B(x2, y2) memiliki gradien m:
m = y1-y2 atau m = y2-y1
x1-x2 x2-x1

b. Persamaan garis lurus yang melalui titik A(x1, y1) dan B(x2, y2) adalah:
y-y1 = x-x1
y2-y1 x2-x1

c. Persamaan garis lurus (pgl) yang bergradien m dan melalui titik A(x1, y1) adalah:
y = m (x – x1 ) + y1

4. Menentukan Gradien Dari Persamaan Garis Lurus
@ Persamaan garis lurus : ax + by = c maka gradiennya m = - a/b
@ Persamaan garis lurus : y = ax + b maka m = a
@ Garis yang sejajar sumbu x memiliki persamaan y = c dan m = 0
@ Garis yang sejajar sumbu y memiliki persamaan x = c dan tidak memiliki gradient

5. Titik Potong Dua Buah Garis
Menentukan titik potong dua buah garis lurus identik dengan menyelesaikan
penyelesaian sistem persamaan linier dua variabel baik dengan metode eleminiasi,
metode substitusi maupun metode grafik.

6. Hubungan Dua Buah Garis
Dua garis yang bergradien m1 dan m2 dikatakan sejajar jika m1 = m2 dan tegak lurus jika m1 x m2 = -1

BARISAN DAN DERET ARITMATIKA

A) Barisan Aritmatika

1. Pengertian Barisan Aritmatika
Barisan aritmatika adalah suatu barisan dengan selisih antara dua suku yang berurutan selalu tetap.
Misalnya Un menyatakan suku ke-n suatu barisan, maka barisan itu disebut barisan aritmatika jika Un - Un-1 selalu tetap.
Bentuk umum barisan aritmatika seperti berikut :
U1,U2,U3,...... ,Un-1 atau a,a + b,a + 2b,……,a + (n-1) b
Keterangan : U1 = a = suku pertama
Un - Un-1 = beda = b
Un = suku ke-n
n = banyaknya suku / urutan suku
Maka rumus suku ke-n barisan aritmatika adalah Un = a + (n-1) b, dengan n = 1,2,3,……

2. Menentukan Rumus ke-n dari Suatu Barisan
Untuk menentukan rumus ke-n , kita harus menentukan suku pertama (a) dan beda (b).
Contoh :
Tulis rumusnya 2,3,4,...
Penyelesaian :
a = 2
b = 3-2 = 1
Un = a + (n-1) b
Un = 2 + (n-1) 1
Un = 2 + n – 1
Un = n - 1

3. Menentukan Suku ke-n dari Suatu Barisan
Suku ke-n suatu barisan bilangan dilambangkan dengan Un. Sedangkan untuk menentukan suku ke-n dapat dicari dengan rumus yang dapat diketahui melalui aturan
pembentukan barisan bilangan

Contoh :
Tentukan suku ke-20 barisan bilangan 2,5,8,11,....
Penyelesaian :
a = 2
b = 5-2 = 3
Un = a + (n-1) b
= 2 + (20-1) 3
= 2 + 60 – 3
= 59

Dengan melihat nilai b, kita dapat menentukan barisan aritmatika itu naik atau turun, sebagai berikut :
a. Bila b > 0, maka barisan aritmatika itu naik.
b. Bila b < 0, maka barisan aritmatika itu turun.
Barisan bilangan yang memiliki suku tengah apabila banyak sukunya ganjil. Jika Suku
ke-t atau Ut merupakan suku tengah, maka banyaknya suku adalah (2t – 1) dan suku
terakhir adalah suku ke-(2t – 1) atau U(2t – 1).
sehingga diperoleh hubungan:
Ut = 1/2 (U1 + U(2t – 1) )
Karena U(2t – 1) merupakan suku akhir dari deret tersebut dan U1 merupakan suku awal,
maka:
Utengah = 1/2 ( Uawal + Uakhir)

5). Barisan Aritmatika Tingkat Banyak (Pengayaan)
Barisan aritmatika tingkat x adalah sebuah barisan aritmatika yang memiliki selisih
yang sama tiap suku yang berurutannya setelah x tingkatan.
Dengan menggunakan pembuktian Binomium Newton (tidak diuraikan disini), maka
rumus umum suku ke-n untuk barisan aritmatika tingkat banyak adalah:
Un = a + (n – 1)b + 1/2 (n -1)(n -2)c + 1/3 (n -1)(n - 2)(n-3)d + ….

Keterangan :
a = suku ke-1 barisan mula-mula
b = suku ke-1 barisan tingkat satu
c = suku ke-1 barisan tingkat dua
d = suku ke-1 barisan tingkat tiga dan seterusnya

B) Deret Aritmatika
1. Pengertian Deret Aritmatika
Deret Aritmatika adalah jumlah suku – suku barisan aritmatika. Jika a adalah suku pertama deret aritmatika, Un suku ke-n, Sn jumlah Un . Maka:
Sn = 1/2 n (a + Un)
Keterangan:
1. Beda antara dua suku yang berurutan adalah tetap (b = Sn")
2. Barisan aritmatika akan naik jika b > 0
Barisan aritmatika akan turun jika b < un =" Sn" un =" Sn'" ut =" 1/2" sn =" 1/2" ut =" Sn" a =" 1" b =" 3-2" sn =" 1/2" s10 =" 1/2" s10 =" 1/2" s10 =" 55">2. Sifat-Sifat Deret Aritmatika
1) Un – U(n - p) = b . p
2) Sn = 1/2 n (a + Un) = 1/2 n {2a + (n-1) b}

C. Sisipan dan Deret Aritmatika
1. Pengertian Sisipan
Sisipan dalam deret aritmatika adalah menambahkan beberapa buah bilangan di antara dua suku yang berurutan pada suatu deret aritmatika, sehingga terjadi deret aritmatika yang baru.
Contoh
Deret mula-mula = 4 + 13 + 22 + 31 +......
Setelah disisipi = 4 + 7 + 10 + 13 + 16 + 19 + 22 + 25 + 28 + 31 +…...

2. Beda Deret Baru
Besar beda deret setelah diberi sisipan dinyatakan dengan b1 dan dapat ditentukan dengan rumus berikut :
b1 = b
k+1
b1 = beda deret baru
b = beda deret mula-mula
k = banyak bilangan yang disisipkan

Contoh :
Di antara dua suku yang berurutan pada deret 6 + 15 + 24 + 33 + ... disisipkan 2 buah bilangan, maka :
b = 15 – 6 = 9 dan k = 2
b = 9 = 3
k+1 2+1

BARISAN DERET

BARISAN GEOMETRI

U1, U2, U3, ......., Un-1, Un disebut barisan geometri, jika

U1/U2 = U3/U2 = .... = Un / Un-1 = konstanta

Konstanta ini disebut pembanding / rasio (r)

Rasio r = Un / Un-1

Suku ke-n barisan geometri

a, ar, ar² , .......arn-1
U1, U2, U3,......,Un

Suku ke n Un = arn-1 ® fungsi eksponen (dalam n)


DERET GEOMETRI

a + ar² + ....... + arn-1 disebut deret geometri
a = suku awal
r = rasio
n = banyak suku

Jumlah n suku

Sn = a(rn-1)/r-1 , jika r>1
= a(1-rn)/1-r , jika r<1 ® Fungsi eksponen (dalam n)

Keterangan:

Rasio antara dua suku yang berurutan adalah tetap
Barisan geometri akan naik, jika untuk setiap n berlaku
Un > Un-1
Barisan geometri akan turun, jika untuk setiap n berlaku
Un < Un-1

Bergantian naik turun, jika r < 0

Berlaku hubungan Un = Sn - Sn-1
Jika banyaknya suku ganjil, maka suku tengah
_______ __________
Ut = Ö U1xUn = Ö U2 X Un-1 dst.

Jika tiga bilangan membentuk suatu barisan geometri, maka untuk memudahkan perhitungan, misalkan bilangan-bilangan itu adalah a/r, a, ar


DERET GEOMETRI TAK BERHINGGA

Deret Geometri tak berhingga adalah penjumlahan dari

U1 + U2 + U3 + ..............................

¥
å Un = a + ar + ar² .........................
n=1

dimana n ® ¥ dan -1 < r < 1 sehingga rn ® 0

Dengan menggunakan rumus jumlah deret geometri didapat :

Jumlah tak berhingga S¥ = a/(1-r)

Deret geometri tak berhingga akan konvergen (mempunyai jumlah) untuk -1 < r < 1

Catatan:

a + ar + ar2 + ar3 + ar4 + .................

Jumlah suku-suku pada kedudukan ganjil

a+ar2 +ar4+ ....... Sganjil = a / (1-r²)

Jumlah suku-suku pada kedudukan genap

a + ar3 + ar5 + ...... Sgenap = ar / 1 -r²

Didapat hubungan : Sgenap / Sganjil = r



PENGGUNAAN

Perhitungan BUNGA TUNGGAL (Bunga dihitung berdasarkan modal awal)

M0, M1, M2, ............., Mn

M1 = M0 + P/100 (1) M0 = {1+P/100(1)}M0

M2 = M0 + P/100 (2) M0 = {1+P/100(2)} M0

.
.
.
.

Mn =M0 + P/100 (n) M0 ® Mn = {1 + P/100 (n) } M0


Perhitungan BUNGA MAJEMUK (Bunga dihitung berdasarkan modal terakhir)

M0, M1, M2, .........., Mn

M1 = M0 + P/100 . M0 = (1 + P/100) M0

M2 = (1+P/100) M0 + P/100 (1 + P/100) M0 = (1 + P/100)(1+P/100)M0
= (1 + P/100)² M0
.
.
.

Mn = {1 + P/100}n M0

Keterangan :

M0 = Modal awal
Mn = Modal setelah n periode
p = Persen per periode atau suku bunga
n = Banyaknya periode

Catatan:

Rumus bunga majemuk dapat juga dipakai untuk masalah pertumbuhan tanaman, perkembangan bakteri (p > 0) dan juga untuk masalah penyusutan mesin, peluruhan bahan radio aktif (p < 0).

TRIGONOMETRI


Nilai-Nilai Trigonometri Dengan Sudut-Sudut Istimewa



RUMUS TRIGONOMETRI

1. Rumus trigonometri I

© Sin (A+B) = Sin A • Cos B + Cos A • Sin B
© Sin (A-B) = Sin A • Cos B - Cos A • Sin B
© Cos (A+B) = Cos A • Cos B – Sin A • Sin B
© Cos (A-B) = Cos A • Cos B + Sin A • Sin B
© Tag (A+B) = Tag A + Tag B
1 – Tag A•Tag B
© Tag (A-B) = Tag A - Tag B
1 + Tag A•Tag B

2. Rumus trigonometri II

© Sin A + Sin B = 2 • Sin ½ (A+B) • Cos ½ (A-B)
© Sin A - Sin B = 2 • Cos ½ (A+B) • Sin ½ (A-B)
© Cos A + Cos B = 2 • Cos ½ (A+B) • Cos ½ (A-B)
© Cos A - Cos B = -2 • Sin ½ (A+B) • Sin ½ (A-B)

3. Rumus trigonometri III
© Sin 2A = Sin (A+A)
Bukti :
Sin (A+A) = Sin A • Cos B + Cos A • Sin B
= 2 • Sin A • Cos A
Jadi, : Sin 2A = 2 • Sin A • Cos A

© Cos 2A = Cos² A – Sin² A
Bukti :
Cos 2A = Cos A • Cos A – Sin A • Sin A
= Cos² A – Sin² A
Jadi, : Cos 2A = Cos² A – Sin² A

© Tag 2A = Tag (A+A)
Bukti :
Tag 2A = Tag A + Tag A
1- Tag A• Tag A
= 2 Tag A
1 – Tag ² A
Jadi, : Tag 2A = 2 Tag A
1– Tag ² A


4. Rumus trigonometri IV
© Sin A • Cos B = ½ [ Sin (A+B ) + Sin (A-B)]
© Cos A • Sin B = ½ [Sin (A+B ) - Sin (A-B)]
© Cos A • Cos B = ½ [Cos (A+B) + Cos (A-B)]
© Sin A • Sin B = - ½ [Cos (A+B) - Cos (A-B)]
PENJUMLAHAN DUA SUDUT (a + b)

sin(a + b) = sin a cos b + cos a sin b
cos(a + b) = cos a cos b - sin a sin b
tg(a + b ) = tg a + tg b
1 - tg2a

SELISIH DUA SUDUT (a - b)

sin(a - b) = sin a cos b - cos a sin b
cos(a - b) = cos a cos b + sin a sin b
tg(a - b ) = tg a - tg b
1 + tg2a

SUDUT RANGKAP

sin 2a = 2 sin a cos a
cos 2a = cos2a - sin2 a
= 2 cos2a - 1
= 1 - 2 sin2a
tg 2a = 2 tg 2a
1 - tg2a
sin a cos a = ½ sin 2a
cos2a = ½(1 + cos 2a)
sin2a = ½ (1 - cos 2a)

Secara umum :

sin na = 2 sin ½na cos ½na
cos na = cos2 ½na - 1
= 2 cos2 ½na - 1
= 1 - 2 sin2 ½na
tg na = 2 tg ½na
1 - tg2 ½na

JUMLAH SELISIH DUA FUNGSI YANG SENAMA


BENTUK PENJUMLAHAN ® PERKALIAN

sin a + sin b = 2 sin a + b cos a - b
2 2
sin a - sin b = 2 cos a + b sin a - b
2 2
cos a + cos b = 2 cos a + b cos a - b
2 2
cos a + cos b = - 2 sin a + b sin a - b
2 2

BENTUK PERKALIAN ® PENJUMLAHAN

2 sin a cos b = sin (a + b) + sin (a - b)
2 cos a sin b = sin (a + b) - sin (a - b)
2 cos a cos b = cos (a + b) + cos (a - b)
- 2 sin a cos b = cos (a + b) - sin (a - b)

PENJUMLAHAN FUNGSI YANG BERBEDA

Bentuk a cos x + b sin x

Merubah bentuk a cos x + b sin x ke dalam bentuk K cos (x - a)


a cos x + b sin x = K cos (x-a)

dengan :
K = Öa2 + b2 dan tg a = b/a Þ a = ... ?

Kuadran dari a ditentukan oleh kombinasi tanda a dan b sebagai berikut I


I II III IV
a + - - +
b + + - -


keterangan :
a = koefisien cos x
b = koefisien sin x

RELASI

Hubungan/relasi dari himpunan A ke himpunan B adalah suatu pemasangan anggota-anggota A dengan anggota-anggota B.

A. SEBUAH RELASI R TERDIRI DARI:

1.Himpunan A
2.Himpunan B
3.Sebuah kalimat terbuka P(x,y) yang menyatakan hubungan antara himpunan A dengan himpunan B.
Dimana x bersesuaian dengan a Î A dengan y bersesuaian
denganb Î B.
- Bila P(a,b) betul maka a berelasi dengan b. Ditulis a R b
- Bila tidak demikian maka a R b

B. SEBUAH RELASI DAPAT DINYATAKAN DENGAN:

1.Himpunan Pasangan Berurutan (a,b)
2.Kalimat terbuka P(x,y)
3.Diagram cartesius ( diagram A x B )
4.Diagram panah
- bila R adalah sebuah relasi, maka himpunan dari relasi ini adalah:
R = {(a,b) ½ a Î A; b Î B; P(a,b) adalah betul}
Ket: Jika A=B, maka P(x,y) mendefinisikan sebuah relasi
di dalam A.

contoh :

R = (A,B, P(x,y))
A = {2,3,4}
B = {3,4,5,6}
P(x,y) menyatakan x pembagi y

Himpunan penyelesaian relasi ini adalah

a. Himpunan pasangan berurutan

R = {(2,4), (2,6), (3,3), (3,6), (4,4)}

Contoh :
Via: aku senang permen dan coklat
Andre: aku senang coklat dan es krim
Ita: aku suka es krim

Dari contoh di atas dapat dibuat dua himpunan, yaitu :
-Himpunan A adalah himpunan nama orang
A = { Via, Andre, Ita }
-Himpunan B adalah himpunan makanan kesukaan
B = { es krim, coklat, permen }